PENGAMAN
RUMAH DENGAN SYSTEM MOTION DETECTION
MENGGUNAKAN SENSOR MPU-6050
Disusun Oleh;
TIA ARIYANTI (4211301041)
ALAN
BURHANNUDIN (4211301048)
EKO
WIBISONO (4211301059)
Latar Belakang Masalah
Batam merupakan kota yang laju pertumbuhan
pendudukannya terus meningkat. Tercatat jumlah penduduk kota Batam, Provinsi
Kepulauan Riau bertambah rata-rata 100.000 jiwa tiap tahunnya (Antaranews.com).
Hal tersebut dikarenakan kota Batam dijadikan sasaran para pendatang untuk
mencari pekerjaan di kota yang dikenal menjadi kota industri ini.
Banyaknya jumlah pendatang dan kurangnya
lapangan pekerjaan yang tersedia, hal ini mengakibatkan tingkat kriminalitas
meningkat di kota Batam mencapai 22.79 persen, angka ini merupakan angka
tertinggi jika di bandingkan dengan wilayah di Kepulauan Riau lainnya (Metronews.com).
Salah satu tingkat kriminalitas yang terjadi adalah pencurian yang di lakukan
dengan membobol rumah warga.
Oleh karena hal tersebut penulis merancang
sebuah alat yaitu “Pengaman
Rumah Dengan System Motion Detection
Menggunakan Sensor Mpu-6050” dimana dengan menggunakan alat ini
dapat menjadi sistem pengaman yang menjadi alarm bagi pemilik rumah. Yang
bertujuan untuk mengurangi tingkat pencurian yang terjadi. Selain itu tujuan
dibuatnya untuk memenuhi pengimplementasian sensor accelerometer yang kali ini
penulis menggunakan sensor MPU-6050.
Perumusan Masalah
Perumusan masalah proyek akhir sensor ini adalah:
1.
Bagaimana cara mengambil nilai titik awal sensor MPU-6050?
2.
Bagaimana cara mengaktifkan buzzer saat terjadi perubahan nilai titik
awal pada MPU-6050?
BatasanMasalah
1.
Tidak membahas semua perubahan nilai sumbu (X,Y,Z).
2.
Hanya menggunakan perubahan nilai sumbu pada sumbu Y.
Tujuan dan Manfaat
Adapun
tujuan dari pembuatan proyek akhir sensor ini antara lain:
1.
Merancang sebuah
sistem pengaman
rumah dengan menggunakan sensor MPU-6050.
2.
Menyelesaikan project Akhir
mata kuliah sensor.
Adapun
manfaat dari pembuatan proyek akhir ini antara lain:
1.
Meningkatkan sistem pengaman rumah dan dapat diletakan secara portable.
Dasar teori
Sensor MPU-6050
Sensor MPU-6050 merupakan sensor mampu membaca
kemiringan sudut berdasarkan data dari sensor accelerometer dan sensor gyroscope.
Sensor ini juga dilengkapi oleh sensor suhu yang mengukur daerah sekitar.
Sensor MPU-6050 ini membutuhkan tegangan kerja 3,3 V. tetapi pada modul yang
digunakan sudah dilengkapi dengan regulator tegangan 3,3 V, sehingga bisa
langsung dihubungkan dengan tegangan 5V. Sensor ini menggunakan jalur keluaran
berupa jalur data I2C yaitu SCA dan SCL yang dalam Arduino dapat menggunakan
kaki A4 dan A5.
Arduino Uno
Arduino Uno merupakan papan mikrokontroler yang
berbasis ATmega328. Dimana Arduino uno ini memiliki 14 digital pin
input/output, dimana 6 pin merupakan output PWM, 6 pin input analog, 16 MHz
resonator keramik, koneksi USB, jack catu daya eksternal, header ICSP, dan
tombol reset. Pada project ini
Arduino uno digunakan sebagai mikrokotroler untuk menjalankan program sensor
yang akan mengatur jalannya MPU-6050 yang menggunakan kaki A4 dan A5 yang
menggunakan komuniasi I2C.
Arduino Sensor Shield
Shield merupakan papan rangkaian yang belum di
sempurnakan atau dilengkapi secara keseluruhan dan dibuat dengan pin yang
sesuai dengan pin pada Arduino agar mudah saat digunakan atau dihubungkan.
Arduino Sensor Shield ini digunakan untuk memudahkan penggunakan jalur data
berupa I2C yang dapat langsung digunakan untuk sensor MPU-6050.
PushButton
Push button merupakan perangkat yang berfungsi
untuk menghubungkan atau memutuskan aliran arus listrik dengan sistem kerja
tekan unlock. Sistem kerja ini hanya
bekerja sebagai device penghubung
atau pemutus aliran arus listrik saat tombol ditekan, dan saklar akan kembali
pada kondisi normal. Pada project ini
push button berfungsi untuk mengambil nilai awal sensor saat terhubung.
LED (Light Emitting Diode)
Light Emitting Diode merupakan komponen
elektronika yang dapat memancarkan cahaya monokromatik saat diberikan tegangan
maju. LED termasuk jenis diode yang tergantung pada bahan jenis semikonduktor.
Warna- warna cahaya yang dipancarkan oleh LED tergantung jenis semikonduktor
yang dipergunakan. LED juga dapat memancarkan sinar inframerah yang tidak
tampak oleh mata seperti yang sering dijumpai pada remote control perangkat
elektronik.
Buzzer
Buzzer merupakan alat yang
dapat mengubah sinyal listrik menjadi sinyal suara. Pada umumnya buzzer
digunakan untuk alarm. Pada penggunaan buzzer ini diberikan inputan tegangan
analog. Frekuensi suara yang dikeluarkan oleh buzzer yaitu 1-5 Khz. ( Albert Paul,Prinsip-prinsip Elektronika, 1989
hal: 134).
PENGAMAN RUMAH DENGAN SYSTEM MOTION DETECTION MENGGUNAKAN SENSOR MPU-6050
Diagram Blok Perangkat Keras |
Kalibrasi Awal Data |
Diagram Alir |
Rangkaian Sensor |
LAMPIRAN
PROGRAM Library MPU-6050
//
I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using
DMP (MotionApps v2.0)
//
6/21/2012 by Jeff Rowberg <jeff@rowberg.net>
//
Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
//
Changelog:
// 2013-05-08 - added seamless Fastwire
support
// - added note about gyro
calibration
// 2012-06-21 - added note about Arduino
1.0.1 + Leonardo compatibility error
// 2012-06-20 - improved FIFO overflow
handling and simplified read process
// 2012-06-19 - completely rearranged DMP
initialization code and simplification
// 2012-06-13 - pull gyro and accel data
from FIFO packet instead of reading directly
// 2012-06-09 - fix broken FIFO read
sequence and change interrupt detection to RISING
// 2012-06-05 - add gravity-compensated
initial reference frame acceleration output
// - add 3D math helper file to
DMP6 example sketch
// - add Euler output and
Yaw/Pitch/Roll output formats
// 2012-06-04 - remove accel offset clearing
for better results (thanks Sungon Lee)
// 2012-06-01 - fixed gyro sensitivity to be
2000 deg/sec instead of 250
// 2012-05-30 - basic DMP initialization
working
/*
============================================
I2Cdev device library code is placed under
the MIT license
Copyright (c) 2012 Jeff Rowberg
Permission is hereby granted, free of charge,
to any person obtaining a copy
of this software and associated documentation
files (the "Software"), to deal
in the Software without restriction,
including without limitation the rights
to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell
copies of the Software, and to permit persons
to whom the Software is
furnished to do so, subject to the following
conditions:
The above copyright notice and this
permission notice shall be included in
all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/
//
I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
//
for both classes must be in the include path of your project
//
Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is
used in I2Cdev.h
//#include
"MPU6050.h" // not necessary if using MotionApps include file
#include
"I2Cdev.h"
#include
"MPU6050_6Axis_MotionApps20.h"
#if
I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include
"Wire.h"
#endif
//
class default I2C address is 0x68
//
specific I2C addresses may be passed as a parameter here
//
AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
//
AD0 high = 0x69
MPU6050
mpu;
//MPU6050
mpu(0x69); // <-- use for AD0 high
/*
=========================================================================
NOTE: In addition to connection 3.3v, GND,
SDA, and SCL, this sketch
depends on the MPU-6050's INT pin being
connected to the Arduino's
external interrupt #0 pin. On the Arduino
Uno and Mega 2560, this is
digital I/O pin 2.
=========================================================================
*/
/*
=========================================================================
NOTE: Arduino v1.0.1 with the Leonardo board
generates a compile error
when using Serial.write(buf, len). The
Teapot output uses this method.
The solution requires a modification to the
Arduino USBAPI.h file, which
is fortunately simple, but annoying. This
will be fixed in the next IDE
release. For more info, see these links:
http://arduino.cc/forum/index.php/topic,109987.0.html
http://code.google.com/p/arduino/issues/detail?id=958
=========================================================================
*/
//
uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
//
quaternion components in a [w, x, y, z] format (not best for parsing
// on
a remote host such as Processing or something though)
//#define
OUTPUT_READABLE_QUATERNION
//
uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
//
(in degrees) calculated from the quaternions coming from the FIFO.
//
Note that Euler angles suffer from gimbal lock (for more info, see
//
http://en.wikipedia.org/wiki/Gimbal_lock)
//#define
OUTPUT_READABLE_EULER
//
uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
//
pitch/roll angles (in degrees) calculated from the quaternions coming
//
from the FIFO. Note this also requires gravity vector calculations.
//
Also note that yaw/pitch/roll angles suffer from gimbal lock (for
//
more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define
OUTPUT_READABLE_YAWPITCHROLL
//
uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
//
components with gravity removed. This acceleration reference frame is
//
not compensated for orientation, so +X is always +X according to the
//
sensor, just without the effects of gravity. If you want acceleration
//
compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define
OUTPUT_READABLE_REALACCEL
//
uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
//
components with gravity removed and adjusted for the world frame of
//
reference (yaw is relative to initial orientation, since no magnetometer
// is
present in this case). Could be quite handy in some cases.
//#define
OUTPUT_READABLE_WORLDACCEL
//
uncomment "OUTPUT_TEAPOT" if you want output that matches the
//
format used for the InvenSense teapot demo
//#define
OUTPUT_TEAPOT
#define
LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool
blinkState = false;
const
int ledPin = 8;
const
int buzzerPin = A0;
//
MPU control/status vars
bool
dmpReady = false; // set true if DMP
init was successful
uint8_t
mpuIntStatus; // holds actual interrupt
status byte from MPU
uint8_t
devStatus; // return status after
each device operation (0 = success, !0 = error)
uint16_t
packetSize; // expected DMP packet
size (default is 42 bytes)
uint16_t
fifoCount; // count of all bytes
currently in FIFO
uint8_t
fifoBuffer[64]; // FIFO storage buffer
//
orientation/motion vars
Quaternion
q; // [w, x, y, z] quaternion container
VectorInt16
aa; // [x, y, z] accel sensor measurements
VectorInt16
aaReal; // [x, y, z] gravity-free accel sensor
measurements
VectorInt16
aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat
gravity; // [x, y, z] gravity vector
float
euler[3]; // [psi, theta,
phi] Euler angle container
float
ypr[3]; // [yaw, pitch,
roll] yaw/pitch/roll container and gravity
vector
float
a,b,c;
float
a1,b1,c1;
boolean
pushbutton;
//
packet structure for InvenSense teapot demo
uint8_t
teapotPacket[14] = { '$', 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0x00, 0x00, '\r', '\n'
};
//
================================================================
//
=== INTERRUPT DETECTION
ROUTINE ===
//
================================================================
volatile
bool mpuInterrupt = false; //
indicates whether MPU interrupt pin has gone high
void
dmpDataReady() {
mpuInterrupt = true;
}
//
================================================================
//
=== INITIAL
SETUP ===
//
================================================================
void
setup() {
pinMode(8,
OUTPUT);
pinMode(4,INPUT);
digitalWrite(4,HIGH);
// join I2C bus (I2Cdev library doesn't do
this automatically)
#if
I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
TWBR = 24; // 400kHz I2C clock (200kHz if CPU
is 8MHz). Comment this line if having compilation difficulties with TWBR.
#elif
I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif
// initialize serial communication
// (115200 chosen because it is required for
Teapot Demo output, but it's
// really up to you depending on your
project)
Serial.begin(115200);
// while (!Serial); // wait for Leonardo
enumeration, others continue immediately
// NOTE: 8MHz or slower host processors, like
the Teensy @ 3.3v or Ardunio
// Pro Mini running at 3.3v, cannot handle
this baud rate reliably due to
// the baud timing being too misaligned with
processor ticks. You must use
// 38400 or slower in these cases, or use
some kind of external separate
// crystal solution for the UART timer.
// initialize device
//Serial.println(F("Initializing I2C
devices..."));
mpu.initialize();
// verify connection
// Serial.println(F("Testing device
connections..."));
Serial.println(mpu.testConnection() ?
F("MPU6050 connection successful") : F("MPU6050 connection
failed"));
// wait for ready
// Serial.println(F("\nSend any character
to begin DMP programming and demo: "));
// while (Serial.available() &&
Serial.read()); // empty buffer
// while (!Serial.available()); // wait for data
// while (Serial.available() &&
Serial.read()); // empty buffer again
// load and configure the DMP
// Serial.println(F("Initializing
DMP..."));
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled
for min sensitivity
mpu.setXGyroOffset(220);
mpu.setYGyroOffset(76);
mpu.setZGyroOffset(-85);
mpu.setZAccelOffset(1788); // 1688 factory
default for my test chip
// make sure it worked (returns 0 if so)
if (devStatus == 0) {
// turn on the DMP, now that it's ready
// Serial.println(F("Enabling
DMP..."));
mpu.setDMPEnabled(true);
// enable Arduino interrupt detection
// Serial.println(F("Enabling interrupt
detection (Arduino external interrupt 0)..."));
attachInterrupt(0, dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();
// set our DMP Ready flag so the main
loop() function knows it's okay to use it
// Serial.println(F("DMP ready! Waiting
for first interrupt..."));
dmpReady = true;
// get expected DMP packet size for later
comparison
packetSize = mpu.dmpGetFIFOPacketSize();
} else {
// ERROR!
// 1 = initial memory load failed
// 2 = DMP configuration updates failed
// (if it's going to break, usually the
code will be 1)
Serial.print(F("DMP Initialization
failed (code "));
Serial.print(devStatus);
Serial.println(F(")"));
}
// configure LED for output
pinMode(LED_PIN, OUTPUT);
}
//
================================================================
//
=== MAIN PROGRAM LOOP ===
//
================================================================
void
loop() {
// if programming failed, don't try to do
anything
if (!dmpReady) return;
// wait for MPU interrupt or extra packet(s)
available
while (!mpuInterrupt && fifoCount
< packetSize) {
// other program behavior stuff here
// .
// .
// .
// if you are really paranoid you can
frequently test in between other
// stuff to see if mpuInterrupt is true,
and if so, "break;" from the
// while() loop to immediately process the
MPU data
// .
// .
// .
}
// reset interrupt flag and get INT_STATUS
byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();
// get current FIFO count
fifoCount = mpu.getFIFOCount();
// check for overflow (this should never
happen unless our code is too inefficient)
if ((mpuIntStatus & 0x10) || fifoCount ==
1024) {
// reset so we can continue cleanly
mpu.resetFIFO();
Serial.println(F("FIFO
overflow!"));
// otherwise, check for DMP data ready
interrupt (this should happen frequently)
} else if (mpuIntStatus & 0x02) {
// wait for correct available data length,
should be a VERY short wait
while (fifoCount < packetSize) fifoCount
= mpu.getFIFOCount();
// read a packet from FIFO
mpu.getFIFOBytes(fifoBuffer, packetSize);
// track FIFO count here in case there is
> 1 packet available
// (this lets us immediately read more
without waiting for an interrupt)
fifoCount -= packetSize;
//PROGRAM
PENGAMAN RUMAH
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
Serial.print("ypr\t");
Serial.print(ypr[0] * 180 / M_PI);
Serial.print("\t");
Serial.print(ypr[1] * 180 / M_PI);
Serial.print("\t");
Serial.println(ypr[2] * 180 / M_PI);
pushbutton = digitalRead(4);
a1 =
ypr[0] * 180 / M_PI; //data sekarang
b1 =
ypr[1] * 180 / M_PI;
c1 =
ypr[2] * 180 / M_PI;
if(pushbutton == LOW)
{
a = a1;
// data disimpan
b = b1;
c = c1;
}
//check(a,a1,30); //check data
check(b,b1,0.7);
//check(c,c1,30);
}
}
void check(float data, float current,float
range){
float
Min=data-range; // ambil nilai terkecil
float
Max=data+range; //terbesar
if(current>Max||current<Min){ //jika nilai sekrang > nilai save
max.. begitu sebaliknha
digitalWrite(ledPin, HIGH);
buzz(4,20);
digitalWrite(ledPin, LOW);
}
else{
digitalWrite(ledPin, LOW);
buzz(0,0);
}
}
void buzz(int reps, int rate) {
for
(int i = 0; i < reps; i++) {
analogWrite(buzzerPin, 1000);
delay(100);
analogWrite(buzzerPin, 0);
delay(rate);
}
}
Presentation Done with Mr Asrizal Deri Futra, S.Si., M.Si |
Assalamualakum,saya ingin membuat TA dengan sensor kemiringan untuk meng offkan dan meng onkan atus,jd
ReplyDeleteGan,klo buat on,off dan reset arduino dgn relay programnya gmna ya??
Jd saya ingin membuat TA yg apabila saat saklar dinyalakan maka arduino on,kemudian saat kemiringan mencpai +60 derajat arduino mati,saat di kembalikan ke posisi semula arduino msh off,saat saklar di offkan maka arduino di reset dan saat saklar di onkan sdh kmbli ke kondisi semula,mohon bantuanya gan,, terimksih
Walaikumusalam, project diatas saya menggunakan sensor gyro. Disana kamu bisa cari library sudah ada untuk membaca sudut x,y,dan z. program untuk reset dan megatur nya bisa dilihat di //PROGRAM PENGAMAN RUMAH disana berfungsi untuk mengambil posisi nilai yang diinginkan untuk menjadi setpoint. Dan logika bisa kamu sesuaikan dengan yang kamu mau.
DeleteThis comment has been removed by the author.
DeleteThis comment has been removed by the author.
Deleteassalamualaikum kak, saya berencana mencoba membuat alat yg kakak jelaskan diatas namun saya kurang paham dengan kodingannya. bisa tolong kirimkan kodingan aslinya ke email saya tidak kak? terimakasih sebelumnya
ReplyDeleteemail : prwidiastuty@gmail.com
Delete